
Version Notes

This eBook is updated from time to time as more data develops and a more
refined version of the project's goals becomes clear. We shall try to keep
archived copies as time progresses (starting with version 1.0.0)

This eBook is a Public Domain Document. Aside from logos owned by
the Nikovash Empire and IoVa Systems, this book should be treated as a
free, free to distribute document. This document should free with the
exceptions listed below

Smartnode Setup Guide: v1.0

Created: June 5th, 2025

Intended distribution models include:

Self Hosted ePub PDF
Apple Bookstore
Amazon Bookstore (They make us charge $0.99)
Draft2Digital

Note about Amazon Marketplace

Amazon Kindle Direct Publishing (KDP) will not let us give away this
whitepapaer, or any ePub free of charge. as such all royalties from the sale
of this book on Amazon Marketplace (or others in the future if they force us
to sell for more than $0.00 USD shall annually donated to St. Judes Child
Cancer Research Center

https://www.bitoreum.cc/documents/smartnodeinstall.epub
https://www.bitoreum.cc/documents/smartnodeinstall.pdf
https://www.stjude.org/donate/donate-to-st-jude.html?frequency_selected=0

Things to Consider

This guide assumes you will be running the Smartnode on a Linux-based
system. While it is technically possible to use Windows, I have observed
increasing issues with Smartnodes running on Windows. It simply does not
meet the typical requirements of a reliable Smartnode setup.

I cannot, in good faith, recommend installing a Smartnode on a home
internet connection—even if you have business-class service. In my
experience supporting this software and other Ghostrider coins (i.e., DASH
derivatives), home internet tends to suffer from uptime issues. As a result,
you are more likely to receive high POS_BAN scores. We strongly encourage
you to use a VPS. Our support channel on Discord can provide
recommendations.

Although it is technically possible to install the node under the root user,
this is not advisable. The recommended approach is to follow this user
structure:

Users

root
sudouser
bitoreum

root – A system-level, protected user. This is the "big boss" account, with
unrestricted access to do anything on the system, including irreversible
actions like deleting critical data. Use this user only if you absolutely know
what you are doing.

sudouser – A user account with elevated (sudo) privileges. This is the
preferred method for executing administrative tasks, rather than using the
root account directly. While this user is capable of installing the Smartnode,
doing so can be risky—if compromised, it can still harm the system. You
may name this user whatever you like, unlike the reserved root.

bitoreum – This is the preferred non-privileged user account under which
the Smartnode will be installed. Since it lacks elevated privileges, it is
relatively safe, even if compromised.

Oracle VPS vs. Everyone Else

I always recommend Oracle VPS over other providers. With a bit of
understanding of their Always Free tier, it’s a solid choice for anyone
wanting to try out a Smartnode without a significant financial commitment.
However, you will need a valid credit card for verification; prepaid debit or
credit cards are not accepted.

Keep in mind that Oracle is not designed for entry-level users, hobbyists, or
even small businesses. Their platform primarily serves enterprise
customers. Concepts like protected instances, internal port mapping,
software firewall exclusions, console usage, and mandatory SSH key login
can make Oracle intimidating, even for intermediate users. That said, it's
still free (at the time of writing), which is a compelling advantage.

Finally, Oracle VPS often does not support common firewall tools like
firewalld or ufw. It is strongly encouraged to use iptables, which this
guide recommends.

Resources

The absolute bare minimum VPS instance is a single-core, 1GB RAM
setup, with a minimum 2GB swapfile. While this configuration will work,
it will likely struggle during the initial sync and may only be capable of
supporting one other low-resource Ghostrider coin.

A good, safe baseline is: 1–2GB RAM, 25GB SSD, 1Gbps network
bandwidth, with Ubuntu 22.04 or 24.04 (recommended) installed. In
general, the more resources, the better.

For Oracle, I recommend a single Ampere core (from the Always Free tier)
with 6GB of RAM and 47GB of high-speed boot volume block storage.
This configuration uses the ARM architecture, so make sure to match the

architecture to the Crystal Bitoreum wallet. Oracle also offers an x86
instance type, but it is limited to 2 cores and a maximum of 1GB RAM—
not ideal, but workable.

VULTR (affiliate link) offers a Cloud Compute instance for about $6 USD
per month. It includes a single core, 1GB RAM, and both an IPv4 and IPv6
address. This setup can handle one Smartnode—or possibly one other
Ghostrider coin—as long as you add a 2–4GB swapfile.

RackNerd (non-affiliate link) frequently runs great deals throughout the
year. During the Christmas holiday season, I secured a long-term service
VPS for about $29.99 per year—4 cores and 4GB RAM for life. Their deals
fluctuate, so it’s worth checking regularly.

IONOS (non-affiliate link) is an emerging low-cost VPS provider. I don’t
have enough direct experience to offer a recommendation, but they’ve been
favorably mentioned by others—take that as you will.

And finally, the elephant in the room: Hetzner (non-affiliate link).
Officially, they prohibit the use of their VPS services for anything related to
cryptocurrency. The original Bitoreum lead developer was banned for
running a TRON wallet, and I was personally removed for running both a
Bitoreum and Yerbas Smartnode. Since their position has not changed, I
cannot recommend them at this time—although they remain inexpensive for
non-US customers.US customers be advised there are tarrifs that you will
be responsible for as of the time of writing.

https://www.vultr.com/?ref=9764470-9J
https://www.racknerd.com/specials/
https://www.ionos.com/servers/vps
https://www.hetzner.com/

Connecting for the First Time

Your VPS instance provider will give you an IPv4 address, a username
(root or ubuntu, typically), and either a password or an SSH key. To
connect with a password, open the terminal application and use the
following format:

ssh usernameProvided@ip#.ip#.ip#.ip#

The system will prompt you for a password. Enter the provided password,
and you should see a bash prompt like this:

username@server-hostname:~$

To log in using an SSH key file, there are a few important considerations.
Windows doesn't enforce file permissions, but Linux and macOS do. First,
you need to chmod the key file before you can use it properly:

chmod 600 /path/to/ssh.key

Type chmod 600 first, then drag and drop the key file into the terminal to
auto-fill the path. Once done, the SSH command is ready:

ssh -i /path/to/ssh.key usernameProvided@ip#.ip#.ip#.ip#

Using an SSH key allows you to log in without entering a password, as the
key file serves as your private authentication. DO NOT SHARE OR
REVEAL THIS FILE TO OTHERS!

First Boot

Depending on your instance, your first login will be as either root or
ubuntu. The first thing we’ll do is create a new sudo-enabled user:

sudo adduser sudouser

The system will prompt you to enter the password twice—ensure they
match and are secure but memorable. It will then ask for details like full
name, phone, etc. These fields are less important. When prompted to
confirm the details with [Y/n], type Y to finish. Example:

info: Adding user `sudouser' ...

info: Selecting UID/GID from range 1000 to 59999 ...

info: Adding new group `sudouser' (1006) ...

info: Adding new user `sudouser' (1006) with group `sudouser

(1006)' ...

info: Creating home directory `/home/sudouser' ...

info: Copying files from `/etc/skel' ...

New password:

Retype new password:

passwd: password updated successfully

Changing the user information for sudouser

Enter the new value, or press ENTER for the default

 Full Name []: Super User for the Smartnode VPS

 Room Number []:

 Work Phone []:

 Home Phone []:

 Other []:

Is the information correct? [Y/n] Y
info: Adding new user `sudouser' to supplemental / extra groups

`users' ...

info: Adding user `sudouser' to group `users' ...

Now, add the user to the sudo group:

sudo adduser sudouser sudo

This will return:

info: Adding user `sudouser' to group `sudo' ...

Next, create the bitoreum user the same way, but do not add this user to the
sudo group. Example:

sudo adduser bitoreum

info: Adding user `bitoreum' ...

info: Selecting UID/GID from range 1000 to 59999 ...

info: Adding new group `bitoreum' (1008) ...

info: Adding new user `bitoreum' (1008) with group `bitoreum

(1008)' ...

info: Creating home directory `/home/bitoreum' ...

info: Copying files from `/etc/skel' ...

New password:

Retype new password:

passwd: password updated successfully

Changing the user information for bitoreum

Enter the new value, or press ENTER for the default

 Full Name []: Bitoreum Smartnode

 Room Number []:

 Work Phone []:

 Home Phone []:

 Other []:

Is the information correct? [Y/n] Y
info: Adding new user `bitoreum' to supplemental / extra groups

`users' ...

info: Adding user `bitoreum' to group `users' ...

Do not add the bitoreum user to the sudo group. The following section is
for users continuing with SSH key-based login (recommended for better
security).

SSH-Keygen

The easiest way to switch users is via root access. If you're not already
root, run:

sudo bash

su sudouser

ssh-keygen -t ed25519 -a 100 -C "your.email@address.com"

Example output:

Generating public/private ed25519 key pair.

Enter file in which to save the key

(/home/sudouser/.ssh/id_ed25519):

Created directory '/home/sudouser/.ssh'.

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in

/home/sudouser/.ssh/id_ed25519

Your public key has been saved in

/home/sudouser/.ssh/id_ed25519.pub

The key fingerprint is:

SHA256:Yh6TN9wEwAsjBFAdt40h5dYcKCCeg71HAiR9oa1Z3jc

your.email@address.com

The key's randomart image is:

+--[ED25519 256]--+

|O*+o+==oo |

|+++o*+oB o |

|.++o++=.+ . |

| .O o.o o |

| + o B E . |

| . o * o |

| . |

| |

| |

+----[SHA256]-----+

Next, change to the new (hidden) .ssh folder:

cd ~/.ssh

ls

Expected output:

sudouser@bitoreum-smartnode:~/.ssh$

id_ed25519 id_ed25519.pub

Ubuntu 22.04 and 24.04 use the authorized_keys system. To set it up, run:

mv id_ed25519.pub authorized_keys

cat id_ed25519

Output example:

-----BEGIN OPENSSH PRIVATE KEY-----

someRandomtext&numbers0123456789

someRandomtext&numbers0123456789

someRandomtext&numbers0123456789

someRandomtext&numbers0123456789

someRandomtext&numbers0123456789

-----END OPENSSH PRIVATE KEY-----

This is the private key you will use to access your VPS. Create a new file
called bitoreum_Smartnode_sudouser.key on your local machine and
paste this exact content. Then, secure it with:

chmod 600 /path/to/bitoreum_Smartnode_sudouser.key

Back on the instance remove the private key from the server:
rm id_ed25519

Congratulations! You now have a fully secured SSH key that enables safe
remote login to your sudouser account on your VPS! Now to test the
secured connection with the new keyon you local machine use your
terminal app:
ssh -i /path/to/bitoreum_Smartnode_sudouser.key

sudouser@ip#.ip#.ip#.ip#

You should be greated with the following prompt, or something similar:

Welcome to Ubuntu 24.04.2 LTS (GNU/Linux 6.8.0-1026-oracle

aarch64)

* Documentation: https://help.ubuntu.com

* Management: https://landscape.canonical.com

* Support: https://ubuntu.com/pro

This system has been minimized by removing packages and content

that are

not required on a system that users do not log into.

To restore this content, you can run the 'unminimize' command.

Last login: Sat Jun 7 19:15:45 2025 from your.origin.ip4.number

sudouser@bitoreumsmartnode:~$

While you can create an SSH key for the bitoreum user, it is largely
unnecessary. Once logged in, you can always switch users using the
command:
su <username>

You will however, need the respective user's password to proceed.

Oracle

Oracle often has towo major issues that we have to overcome. First you
have to log into your Oracle Console and navigate to Virtual Cloud
Network > VNC Prefix > security > Security List > Security Rules -> Add
Ingress Rule:

Stateless: off

Source Type: CIDR

Source CIDR: 0.0.0.0/0

IP Protocol: TCP

Source Port Range:

Destination Port Range: 15168

Description: Bitoreum Network

Save or Add Ingress rule, then switch back over to your VPS because now
we need to modify the IP tables:
sudo nano /etc/iptables/rules.v4

Look for the following line:
-A INPUT -p tcp -m state --state NEW -m tcp --dport 22 -j

ACCEPT // and directly below it enter
-A INPUT -p tcp -m state --state NEW -m tcp --dport 15168 -j

ACCEPT

CNTL+O

CNTL+X

sudo iptables-restore </etc/iptables/rules.v4

This applies the new IPv4 iptable rules, in some cases you might have to
reboot the instance, particulatly if this is the first time adding an ingress rule

on the Oracle Console.

Every Other VPS

If ufw is not installed then install it first by:

sudo apt install ufw -y #If already installed ignore this
ufw default deny incoming

ufw default allow outgoing

ufw allow ssh

ufw allow 15168/tcp

ufw enable

We now have a working firewall either route you are taking. Look you
could just use iptables for all instances... but whyyyyyy?

Update & Upgrade Your Instance

Even though we now have a fresh and clean install, we still need to update
the repositories, preinstalled packages, and the OS itself to ensure we’re
running the best version of the instance. This may sound complicated, but
it’s largely an automated process:

sudo apt update && sudo apt dist-upgrade -y

There is always some controversy around using the -y flag, which
automatically answers "yes" to all prompts. In this specific use case, if -y
breaks your system, there are likely bigger issues at play. For our limited
scope and usage, it should be perfectly fine.

Next, we will install the software we’re likely to need throughout the rest of
this guide. Once again, whether or not you use the -y flag is up to you:

sudo apt update && sudo apt install nano unzip fail2ban wget

net-tools -y

Temporarily Suppress sudo Password

For the remainder of this project, we’ll be calling commands that require
elevated sudo privileges. Entering the password repeatedly will become
tedious, so we’ll temporarily suppress the password requirement. DO NOT
leave this suppression in place once you're done—doing so is like leaving
your car unlocked, running, and unattended.

sudo visudo

Now scroll to the bottom of the file and look for the following line:

See sudoers(5) for more information on "@include" directives:

@includedir /etc/sudoers.d

See sudoers(5) for more information on "@include" directives:

@includedir /etc/sudoers.d

Add the following line directly below:

sudouser ALL=(ALL) NOPASSWD:ALL

The updated section should now look like this:

See sudoers(5) for more information on "@include" directives:

@includedir /etc/sudoers.d

sudouser ALL=(ALL) NOPASSWD:ALL

To resume requiring a password for elevated privileges, simply comment
out the line by prefixing it with #. The final section of the visudo file
should then look like this:

See sudoers(5) for more information on "@include" directives:

@includedir /etc/sudoers.d

sudouser ALL=(ALL) NOPASSWD:ALL

Press CTRL+O to save the file, then CTRL+X to cleanly exit visudo.

Adding SWAP

Adding swap is always a good idea especially to lower resoure instances.
First we are going to do this from root, as it has less of a chance of failure
or misconfiguration. First if you have swap already set up (some instances
do) you can check for it :
free -h

 total

Mem: 1Gi

Swap: 0Gi

This means there is no swap present and only 1 GB of physical RAM, lets
help this system out a bit:
sudo bash

dd if=/dev/zero of=/swapfile bs=1k count=2048k

chmod 600 /swapfile

mkswap /swapfile

swapon /swapfile

echo "/swapfile swap swap auto 0 0"| tee -a

/etc/fstab

sysctl -w vm.swappiness=10

echo vm.swappiness = 10 | tee -a /etc/sysctl.conf

exit

This returns us back to the previous user.

Note: swappiness = 10 tells system only to use it if absolutely needed...

Prevent Brute Force Attacks

if given an infinate amount of time and chances a hacker can brute force
their way into any system no matter how secure. Earlier we installed a piece
software that will help prevnet this called fail2ban. Its installed and active
but now we need to configure it.

sudo nano /etc/fail2ban/jail.local

Past the following:
[sshd]

enabled = true

port = 22

filter = sshd

logpath = /var/log/auth.log

maxretry = 3

Save and close this file using
CNTL+O

CNTL+X

Now restart the service:
sudo systemctl restart fail2ban

you now have a hardened and secure VPS, after 3 failed login attempts and
fail2ban will blacklist the offending IP. So be carefule not to enter your own
password wrong too many times. You can force reboot the instance to clear
fail2ban's memory in case this happens

Install & Configure Crystal Bitoreum

At the time of writing, Crystal Bitoreum v4.0.0.0 is not publicly available,
but v3.0.2 is. Even with its known flaws, v3.0.2 will work fine for our
purposes. Assuming you are still operating as the sudouser, return to your
home directory with:

cd

We need the appropriate version of the core wallet to match your system.
Use the command below that corresponds to your instance type:

Ampere (Oracle) / ARM:
wget

https://github.com/bitoreum/bitoreum/releases/download/v3.0.2/b

itoreum-arm-oracle-ubuntu20-3.0.2.01.tar.gz

x86:
wget

https://github.com/bitoreum/bitoreum/releases/download/v3.0.2/b

itoreum-3.0.2.jammy.x86_64.tar.gz

Next, we need the most recent known bootstrap. It os still quite old, and a
newer one will be released with v4.0.0.0. For now, use the following:

wget

https://github.com/bitoreum/bitoreum/releases/download/v3.0.2/b

ootstrap-16feb2023.zip

We are going to globally install the Bitoreum Core so first we either:
tar -xvf bitoreum-arm-oracle-ubuntu20-3.0.2.01.tar.gz

or
tar -xvf bitoreum-3.0.2.jammy.x86_64.tar.gz

What you are left with is a folder called bitoreum-build:
cd bitoreum-build && sudo cp bitoreumd bitoreum-cli /usr/bin

Now any user can run the core without refferencing an absoulte path such
as:
bitoreumd

bitoreum-cli [function]

Now we need to start configuring the bitoreum user Bitoreum/Crystal
Bitoreum keep core files natively in a hiden folder called .bitoreumcore, we
create the directory, propigate it with the bootstrap, and make the last two
files we need:
sudo unzip bootstrap-16feb2023.zip -d

/home/bitoreum/.bitoreumcore

sudo touch /home/bitoreum/.bitoreumcore/debug.log

sudo nano/home/bitoreum/.bitoreumcore/bitoreum.conf

Now we are in the conf file that controls the function of the Crystal/Bitorem
Smartnode here is a template:

#ProTXHash=

#SmartnodePublicKey=

Basic settings

server=1

daemon=1

listen=1

rpcbind=127.0.0.1

rpcallowip=127.0.0.1

RPC credentials

rpcuser=randomlettERSaNDNumbers0995995

rpcpassword=randomlettERSaNDNumbers0995995

Listen and port settings

rpcport=8900 // Do Not duplicate this port use elsewhere

#Smartnode Settings

smartnodeblsprivkey=

#Define IP

externalip=x.x.x.x:15168 // Public IP provided by your VPS

provider

#Preffered Nodeodes, speeds up sync process

addnode=116.203.130.246:15168

addnode=146.235.232.125:15168

addnode=159.69.111.55:15168

addnode=45.32.230.238:15168

addnode=188.34.194.136:15168

addnode=137.131.52.195:15168

There are some lines missing notably:
#ProTXHash=

#SmartnodePublicKey=

smartnodeblsprivkey=

Ignore the ProTXHash line for now, we will come back to that later. The
public and private key can be obtained from a running core, either from the
GUI, launch 'tools > debug console' and type:
bls generate

or from command line:
bitoreum-cli bls generate

Either way, the output will look like:

{

"secret": "uniqekeyrandomstringofchars", // smartnodeblsprivkey

"public": "uniqekeyrandomstringofchars" // SmartnodePublicKey

}

Add these in the appropriateplaces in the conf and then we save and exit the
file:
CNTL+O

CNTL+X

Finally we need to return ownership of all these thinngs we have unziped
and created back to the bitoreum user:
sudo chown -R bitoreum:bitoreum /home/bitoreum

Crystal Bitoreum As A systemd Service

this is kind of unneeded and can be achived with a cron job, but systemd
allows for rebooting the instance in case it crashes, which we can test later.
Make sure we are logged in as the sudouser user.

sudo nano /etc/systemd/system/bitoreum.service

Copy and paste the following text:

###

###

Bitoreum Smartnode Systemd service alway alive

###

###

[Unit]

Description=Bitoreum Node Daemon

After=network.target

[Service]

Type=forking

User=bitoreum

RuntimeDirectory=/home/bitoreum/.bitoreumcore

#PIDFile=/run/bitoreumd.pid

Restart=on-failure

ExecStart=/usr/bin/bitoreumd \

 -datadir=/home/bitoreum/.bitoreumcore/ \

 -conf=/home/bitoreum/.bitoreumcore/bitoreum.conf \

 -daemon

ExecStop=/usr/bin/bitoreum-cli \

 -datadir=/home/bitoreum/.bitoreumcore/ \

 -conf=/home/bitoreum/.bitoreumcore/bitoreum.conf \

 stop

Recommended hardening

Provide a private /tmp and /var/tmp.

PrivateTmp=true

Mount /usr, /boot/ and /etc read-only for the process.

ProtectSystem=full

Disallow the process and all of its children to gain

new privileges through execve().

NoNewPrivileges=true

Use a new /dev namespace only populated with API pseudo

devices

such as /dev/null, /dev/zero and /dev/random.

PrivateDevices=true

Deny the creation of writable and executable memory mappings.

MemoryDenyWriteExecute=true

[Install]

WantedBy=multi-user.target

CTRL+O

CTRL+X

echo "pid=/run/bitoreum.pid" >>

/home/bitoreum/.bitoreumcore/bitoreum.conf

sudo systemctl daemon-reload

sudo systemctl enable bitoreum

sudo systemctl start bitoreum && tail -f

/home/bitoreum/.bitoreumcore/debug.log

This will install a systemd service called bitoreum, which launches the
bitoreumd daemon under the user named bitoreum. If bitoreumd crashes
under that user, it will automatically attempt to relaunch—again and again.
One important thing to note: with this setup, you can’t stop the core using
the traditional method.

Before we continue, monitor the tail log for errors and to confirm that the
node is syncing with other Smartnodes. It may take a few minutes for the
peers list to propagate and begin pulling data from the network. As
mentioned earlier, the most recent bootstrap is quite old and starts far
behind the current chain height, but once peers are connected, the sync
process typically accelerates quickly.

To test this service and simulate a crash state, start by switching to the
bitoreum user while the service is running:

su bitoreum

cd ~/.bitoreumcore

bitoreum-cli stop && tail -f debug.log

This simulates a crash state. You’ll see bitoreumd shut down and
immediately restart. This means you should not use bitoreum-cli stop
directly—it will simply trigger a restart loop. Instead, use the following
commands to manage the service:

sudo systemctl stop bitoreum

sudo systemctl start bitoreum

There are two major benefits to this setup:

1. Automatic recovery from a crash without intervention.
2. Automatic startup on system reboot—unless you disable it.

If you ever need to disable autostart on reboot, run:

sudo systemctl disable bitoreum

Collateral & Registration

Now that our Smartnode is synced and running in the background, we need
to set up the collateral in the core wallet. If this is your first time using a
core wallet derived from DASH, you’ll need to enable certain features.
Under the Settings menu, select Options. In the popup, go to the Wallet
tab. The two critical settings we need to enable are: Enable Coin Control
Features and Show Smartnodes Tab. Enabling both will trigger a warning
to restart your wallet. Go ahead and close and reopen it. After the restart,
you should see an Inputs button in the Send tab and a new Smartnodes tab
available.

If you have never encrypted your wallet, do so now and set a password that
is both secure and easy to remember. This action will also prompt another
wallet restart.

Now, open the debug console from the Tools menu. To perform the next
steps, your wallet must be unlocked. In the console input field, type:

walletpassphrase "youractualpasswordhere" 100000

The number is the duration (in seconds) the wallet will remain unlocked if
the password is correct. Leaving it blank is the same as entering zero, which
immediately re-locks the wallet. 100000 seconds is approximately 1.16
days. Once that time expires, the wallet automatically relocks and a
password will be required again. You can manually lock it anytime by
entering:

walletlock

With your wallet unlocked, go to the Receive tab. In the Label field, type
Collateral 01 and click the Request Payment button. This creates a new
address labeled Collateral 01 in your wallet. Now send exactly 1,800,000
$BTRM to this address. WARNING: Make sure the checkbox labeled
Subtract fee from amount is unchecked—the amount must be exactly
1800000 (1,800,000 sylized) $BTRM or the registration process will fail.

A popup window with a three-second delay on the OK button will show the
transaction details. Nothing is sent until you click OK, and you can cancel by
clicking cancel at any time.

After confirming, the wallet will take you to the Transactions screen,
where you can monitor the transaction as it propagates across the network.
Wait until the transaction receives at least one network confirmation before
continuing.

At one Confirmation on the transaction alt mouse click on it to bring up a
menu and we are looking for an option called Copy Transaction ID. Paste
this into a text document as we need to assemble a fair amount of data.

As a child project of DASH coin we can use the EXACT command stucture
for creating a masternde on DASH which are three commands

The first command is the ProTXRegister:
protx register_prepare "collateralHash" collateralIndex

"ipAndPort" "ownerKeyAddr" "operatorPubKey" "votingKeyAddr"

operatorReward "payoutAddress" "feeSourceAddress"

Second we need to sign the transaction:
signmessage "collateralAddress" "signMessage"

Then we need to submit the singed transaction:
protx register_submit "tx" "sig"

Starting with the first command the Transaction ID previously saved is the
collateralHash. To get the collateralIndex head back into the wallet
Debug Console and type smartnode outputs, the easiest way to confirm if
you have multiple nodes is to match the last 4 of the collateralHash to the

line displayed, what you are looking for is the number to the right of the
hash, its either going to be a 1 or zero.

For the "ownerKeyAddr" & "votingKeyAddr" in the Debug Console issue
this command twice getnewaddress.

for the operatorPubKey remmeber we put it in the biroreum.conf file on the
node VPS. From a the sudouser issue this command:
sudo cat /home/bitoreum/.bitoreumcore/bitoreum.conf

We are looking for the value we saved in the line:
#SmartnodePublicKey=somekeyvaluehere

Unless you are splitting a node's payouts with a friend or someone who
gives you part of the collateral the operatorReward is going to be zero (0)

For the payoutAddress We are going to go back to the Wallet GUI and go
back to the Recieve tab, In the Label Field lets call this Smartnode
Payouts

Finally for the (feeSourceAddress), go back into the debug console again
and typelistaddressbalances the list that propigates, we are looking for
any balance that IS NOT our 1800000, remmeber we need that clean, it can
be any other address with even tiny amounts of $BTRM we just need it to
cover transaction fees which are tiny

With the first command now completed, head back to the debug console
and past the whole completed command into the input field and submit
(wallet needs to be unlocked). If the transaction is valid the consol will spit
out a bunch of text tht is critical, copt the whole output and pzste it into a
txt file. For the "collateralAddress" you are looking for that address in
the output you got from the previous command. FOr the "signMessage" we
are looking for that line as well it will be filed with a bunch of seemingly
random text but we need the whole bit between the two " marks. Take this
completed command and input it into the debug console. This will spit out a
single line, take note of it, copy and past it into said txt file

For the last command we need the "tx" from the output of the first
command. The "sig" is the single line from the previous output including

the = sign. Once you input this completed command into the debug console
a few things should happen. One the collateral should now be locked to its
address and unspendable, this is required if you want to recieve payments.
Two a new transaction shows up in your transaction screen, once it gets to
one confirmation your new Smartnode should now show up in the
Smartnode tab

Congradulations, you should now have a fully functional Smartnode on the
Crystal Bitoreum Network

Contacts

Website: bitoreum.cc
Explorer: explorer.bitoreum.cc
Github: Crystal Bitoreum
Discord: Crystal Bitoreum Network
Bluesky: Ramen Wukong
YouTube: @CrystalBitoreum

Useful Links

Bitoreum Explorer: Coming Soon...
Bitoreum Pools: Mining Pool Stats
Recommended Exchange: TradeOgre
Recommended Exchange: XeggeX wallet currently offline working
with them to restore
Coin Aggregator: IoVa Systems
Coin Aggregator: CoinGecko
Coin Aggregator: CoinPaprika
Coin Aggregator: AltBuster
Coin Aggregator: CoinCodex

Special thanks to everyone who has contributed to making the project, and a
big shout-out to Marius. Without you, we wouldn't be here, for better or
worse. You are missed, buddy, and I do hope you are alright somewhere...

Official Logo titled "Charlie Murphy" © 2025 by Tica is licensed under CC
BY 4.0. To view a copy of this license, visit CreativeCommons.org

https://www.bitoreum.cc/
https://explorer.bitoreum.cc/
https://github.com/Nikovash/bitoreum
https://discord.gg/SarVf8NcKQ
https://bsky.app/profile/bitoreum.cc
https://www.youtube.com/@CrystalBitoreum
https://miningpoolstats.stream/bitoreum
https://tradeogre.com/
https://xeggex.com/
https://beta.iovasys.com/
https://www.coingecko.com/en/coins/bitoreum
https://coinpaprika.com/coin/btrm-bitoreum/
https://altbuster.com/
https://coincodex.com/crypto/bitoreum/
https://creativecommons.org/licenses/by/4.0/

Table of Contents
Version Notes

Smartnode Setup Guide: v1.0
Note about Amazon Marketplace

Things to Consider
Users
Oracle VPS vs. Everyone Else

Resources
Connecting for the First Time
First Boot
SSH-Keygen
Oracle
Every Other VPS
Update & Upgrade Your Instance
Temporarily Suppress sudo Password
Adding SWAP
Prevent Brute Force Attacks
Install & Configure Crystal Bitoreum
Crystal Bitoreum As A systemd Service
Collateral & Registration
Contacts
Useful Links

	Version Notes
	Smartnode Setup Guide: v1.0
	Note about Amazon Marketplace

	Things to Consider
	Users
	Oracle VPS vs. Everyone Else

	Resources
	Connecting for the First Time
	First Boot
	SSH-Keygen
	Oracle
	Every Other VPS
	Update & Upgrade Your Instance
	Temporarily Suppress sudo Password
	Adding SWAP
	Prevent Brute Force Attacks
	Install & Configure Crystal Bitoreum
	Crystal Bitoreum As A systemd Service
	Collateral & Registration
	Contacts
	Useful Links

